12 个油用向日葵新品种(系)在半干旱山区引种 试验初报

卜晓霞,徐文强,孙 义,张 斌,杨利兰 (甘肃省天水市秦州区农业技术推广站, 甘肃 天水 741000)

摘要:在天水市秦州区南部半干旱山区对12个油用型向日葵新品种(系)进行了品种比较试验。结果表 明, 12 个品种(系)的生育期为 118~134 d, 在当地均能完全成熟。其中 PR2301 产量达到 3 733.50 kg/hm², 较 对照品种法 A18 增产 63.69%, F2、TK3307、Q5160、垦油 8 号、F08-2、TK3303 均较对照品种增产在 10%以 上,其他品种(系)较对照均有不同程度减产。

关键词: 向日葵; 油用型; 新品种; 引种; 产量 中图分类号: S565.5 文献标志码: A

doi:10.3969/j.issn.1001-1463.2016.12.017

油用型向日葵是甘肃天水南部山区重要的经 济作物和油料作物之一。油用型向日葵富含维生 素 E、亚油酸及微量的植物醇和磷脂[1-2], 具有调 节新陈代谢、维持血压平衡、降低血液中胆固醇 和防止动脉硬化及其他血管疾病的功效[3-6]。研究 发现,油用型向日葵具有耐旱、耐瘠薄和产量及 经济效益相对较高的特点,十分适宜于在陇东南 山旱地种植[7-10]。近年来, 当地政府将向日葵种 植作为调整产业结构、促进当地农民增收和农业 增效的主要作物来抓。为了促进当地农作物种植 结构调整和农业增效、农民增收, 我们在天水南 部半干旱山区对引进的 12 个油用型向日葵品种 (系)进行比较试验,以期为当地选择耐旱、耐瘠 薄、丰产性新品种,现将试验结果报道如下。

1 材料与方法

1.1 试验材料及来源

参试油用型向日葵新品种(系)12个,以油用 型向日葵品种法 A18 为对照(CK), 品种(系)及来 源见表1。

1.2 试验地概况

试验设在天水市秦州区汪川良种场,位于甘 肃省天水市南部山区。海拔 1594 m, 年平均降水 量 520 mm, 年无霜期为 165 d, 种植制度为一年 一熟制,土壤类型为黄绵土,属甘肃省东南部典 型半干旱山区。试验地前茬荒地,于2015年4月 2日拖拉机翻地, 4月16日施入普通过磷酸钙450 kg/hm²、三元复合肥 300 kg/hm² 作基肥, 4月 16 日

文章编号: 1001-1463(2016)12-0050-03

机旋压肥、平田整地。

1.3 试验方法

参试品种(系)12个,采用随机区组试验设计, 3次重复,小区面积21.25 m²(8.5 m×2.5 m),品种 (系)为小区,6行区,行距50cm,株距50cm,

表1 试验新品种(系)及来源

品种名称	种子来源
S-31	北京德农种业公司
S18	北京德农种业公司
MGS	北京德农种业公司
Q5105	甘肃敬业农业公司
Q5160	酒泉市安达种业公司
F2	酒泉市安达种业公司
PR2301	新疆普瑞农业科技公司
PR2302	新疆普瑞农业科技公司
TK3303	北京天葵立德种业公司
TK3307	北京天葵立德种业公司
F08-2	甘肃省农业科学院
垦油8号	甘肃农垦良种公司
法A18(CK)	甘肃省农业科学院

收稿日期: 2016-08-02

作者简介: 卜晓霞(1981—), 女, 甘肃天水人, 农艺师, 主要从事作物栽培及技术示范推广工作, 联系电话: (0)13993853851

种植密度 51 000 株 /hm²。试验于 5 月 13 日采用开穴点播方法进行播种,出苗后 6 月 1 日间苗、定苗,6 月 18 日结合锄草并松土,6 月 25 日追肥尿素 300 kg/hm²,7 月 6 日结合除草培土 1 次,8 月 5 日人工拔草 1 次。试验品种(系)9月 24 日完成收获。按甘肃省向日葵品比试验记载标准记载物候期及主要性状,成熟后从每小区中间取连续 10 株,风干后进行室内考种,各小区全区单收计产。

2 结果与分析

2.1 生育期

从表 2 看出,根据向日葵不同物候期划分进行统计,Q5160、F2、TK3307、垦油 8 号 4 个品种(系)生育期为 128~134 d,较对照品种法 A18 生育期长 10~16 d,其他 8 个品种(系)生育期为 118~126 d,较对照品种法 A18 生育期长 0~8 d。引进品种均能在当地完全成熟,生育期满足当地农业生产需要,其中 8 个生育期为 118~126 d 的品种(系)更符合当地农民种植习惯。

表 2 参试油用型向日葵新品种(系)物候期及生育期

品种名称	播种期 /(日/月)	出苗期 /(日/月)	现蕾期 /(日/月)		成熟期 /(日/月)	生育期 /d
S-31	13/5	24/5	18/7	20/8	13/9	123
S18	13/5	24/5	20/7	19/8	10/9	120
MGS	13/5	24/5	16/7	26/8	10/9	120
Q5105	13/5	24/5	14/7	17/8	10/9	120
Q5160	13/5	24/5	22/7	16/8	23/9	133
F2	13/5	24/5	22/7	18/8	24/9	134
PR2301	13/5	24/5	12/7	18/8	8/9	118
PR2302	13/5	24/5	14/7	22/8	8/9	118
TK3303	13/5	24/5	20/7	24/8	10/9	120
TK3307	13/5	24/5	18/7	24/8	18/9	128
F08-2	13/5	24/5	21/7	23/8	16/9	126
垦油8号	13/5	24/5	21/7	25/8	22/9	132
法A18(CK)	13/5	24/5	18/7	22/8	8/9	118

2.2 主要农艺性状

从表3看出,参试品种(系)株高为96.5~191.5 cm, 其中Q5160 达到191.5 cm, 较对照品种法A18高70.3 cm; S18最低,为96.5 cm。茎秆粗为1.66~3.00 cm,其中TK3307最粗,为3.00 cm,较对照品种粗0.70 cm。叶片数为21.2~35.8 片。就生长势和整齐度而言,S-31、Q5160、F2、

PR2302、TK3303、垦油 8 号生长势强, S-31、Q5160、F2、垦油 8 号、法A18(CK) 生长整齐, TK3307 整齐度较差, 其他品种(系)整齐度中。

表3 参试油用型向日葵新品种(系)主要农艺性状

品种名称	株高 /cm	茎秆粗 /cm	叶片数 /片	生长势	整齐度
S-31	153.5	2.47	32.6	强	齐
S18	96.5	1.84	21.8	中	中
MGS	105.2	1.66	21.2	中	中
Q5105	123.4	2.10	26.6	中	中
Q5160	191.5	2.66	33.4	强	齐
F2	184.8	2.90	35.8	强	齐
PR2301	126.2	2.60	28.6	中	中
PR2302	129.6	2.52	30.8	强	中
TK3303	163.2	2.50	28.3	强	中
TK3307	142.1	3.00	26.8	中	较差
F08-2	143.7	2.40	28.6	中	中
垦油8号	158.6	2.51	30.4	强	齐
法A18(CK)	121.2	2.30	31.2	中	齐

2.3 主要经济性状

从表4可知,参试品种(系)的花盘直径为 16.4~21.8 cm, 其中 PR2301、PR2302、TK3303、 TK3307、F08-2 超过 20 cm, S18、MGS 较小, 分 别为 16.6、16.4 cm。 花盘形状 S-31、Q5160、 TK3303 为平, 其他品种(系)为凸或者凸平。花盘 倾斜度为 2~4°。垦油 8 号倒伏率 2.8%, 其他品种 (系)均无倒伏发生。折茎率 Q5105、Q5160、垦油 8号和对照品种法 A18 为 0, 其他品种(系)均有不 同程度折茎现象,其中PR2301、TK3307折茎率 较高,分别为 16.7%、12.96%。Q5105、Q5160、 PR2302 无分枝现象, 其他品种(系)均有不同程度 分枝, 分枝率为 1.85%~24.10%。结实率和出仁率 对照品种法 A18 分别为 71.6%、65.9%, TK3307、 F08-2、垦油 8 号结实率均高于对照品种,其他 品种(系)的结实率均低于对照品种; TK3303 的 出仁率略低于对照品种,其他品种(系)的出仁率 均高于对照品种。S-31、S18、MGS、Q5105、 PR2302 的单株产量低于对照品种, 其他品种 (系)品种高于对照品种。百粒重均高于对照品种 法 A18。

品种名称	花盘直径 /cm	花盘形 状	花盘倾斜度 /°	倒伏率 /%	折茎率 /%	分枝率 /%	结实率 /%	单株产量 /g	百粒重 /g	出仁率 /%
S-31	18.4	平	4	0	2.80	1.85	70.5	29.3	5.47	72.8
S18	16.6	凸平	3	0	0.90	21.30	64.8	21.7	3.55	68.5
MGS	16.4	凸平	3	0	0.90	16.70	71.2	30.8	4.45	72.5
Q5105	19.2	凸平	3	0	0	0	61.1	31.4	7.52	68.3
Q5160	19.8	平	3-4	0	0	0	67.1	56.3	5.96	72.5
F2	19.6	凸平	4	0	4.60	0.90	68.9	69.4	6.43	78.8
PR2301	20.6	凸	3	0	16.70	22.20	66.4	73.4	9.05	77.5
PR2302	20.8	凸	2-3	0	3.70	0	66.7	38.9	5.73	66.3
TK3303	20.4	平	3-4	0	9.30	11.10	70.4	49.5	5.68	65.1
TK3307	21.6	凸	3	0	12.96	17.60	74.8	59.9	6.90	70.2
F08-2	21.8	凸平	4	0	1.85	22.20	73.3	50.6	5.57	66.5
垦油8号	19.2	凸	3	2.8	0	24.10	72.7	51.3	3.72	69.7
法A18(CK)	18.2	凸平	3	0	0	12.96	71.6	44.7	3.38	65.9

表4 参试油用型向日葵新品种(系)主要经济性状

2.4 产量

从表 5 看出,参试品种(系)的折合产量为 1 101.18 ~3 731.76 kg/hm², 其中 PR2301 产量最高,折合产量达到 3 731.76 kg/hm²,较对照品种法 A18 增产 64.18%; F2、TK3307、Q5160、垦油 8 号、F08-2、TK3303 较对照品种均增产在 10%以上。其他品种(系)均较对照有不同程度减产,其中 S18 产量最低,为 1 101.18 kg/hm²。经方差分析结果表明,不同品种(系)间产量差异达到极显著水平,均与对照品种法 A18 差异极显著。

表 5 参试油用型向日葵新品种产量

			· —	
品种 名称	小区平均产量 /(kg/21.25 m²)	折合产量 /(kg/hm²)	较CK增产 /%	产量位次
S-31	3.16	1 487.06 Hi	-34.57	12
S18	2.34	1 101.18 Ii	-51.55	13
MGS	3.33	1 567.06 Hhi	-31.06	11
Q5105	3.39	1 595.29 Hh	-29.81	10
Q5160	6.08	$2~861.18~\mathrm{Dd}$	25.88	4
F2	7.50	$3\;529.41\;\mathrm{Bb}$	55.28	2
PR2301	7.93	3 731.76 Aa	64.18	1
PR2302	4.20	1 976.47 Gg	-13.04	9
TK3303	5.35	$2517.65~\mathrm{Ee}$	10.77	7
TK3307	6.47	3 044.71 Cc	33.95	3
F08-2	5.47	$2\;574.12\;\mathrm{Ee}$	13.25	6
垦油8号	5.54	$2\;607.06\;\mathrm{Ee}$	14.70	5
法 A18(CK)	4.83	2 272.94 Ff		8

3 小结

根据对其物候期、主要农艺性状、经济性状和产量的观察,参试油用型向日葵品种(系)均能

在当地完全成熟, S-31、Q5160、F2、PR2302、TK3303、垦油 8 号等品种(系)生长势强, S-31、Q5160、F2、垦油 8 号、法 A18 等品种(系)生长整齐。其中 PR2301 折合产量达到 3 731.76 kg/hm², F2、TK3307、Q5160、垦油 8 号、F08-2、TK3303 较对照品种均增产 10%以上,建议在甘肃南部半干旱山区做进一步试验;其他品种(系)较对照均有不同程度减产,建议淘汰。

参考文献:

- [1] 王鹏冬,杨新元,贾爱红,等. 我国油用型向日葵研究发展概述[J].杂粮作物,2005,25(4):241-245.
- [2] 杨 立. 全国油用型向日葵杂交种区域试验-吉林通榆总结报告[J]. 农业与技术, 2014(8): 18-18.
- [3] 崔良基,王德兴.油用型向日葵杂交种主要性状及与产量关系研究[J].杂粮作物,2003,23(2):89-92.
- [4] 王玉苹.油葵高产栽培技术[J].农村实用科技信息, 2008(4): 15.
- [5] 李晓丽,张边江.油用向日葵的研究进展[J].安徽农业科学,2009,37(27):13015-13017.
- [6] 王德兴. 油用型向日葵的特点与用途[J]. 中国农村科技, 2005(10): 25.
- [7] 魏廷武. 油用型向日葵籽实主要经济性状与含油率相关性研究[J]. 种子世界, 2004(11): 25-26.
- [8] 马丽荣, 王恒炜, 刘润萍, 等. 甘肃油料作物生产现状及发展建议[J]. 甘肃农业科技, 2013(12): 11-15.
- [9] 侯希明,王德兴,孙恩玉,等. 辽宁省油用向日葵高产栽培技术[J]. 杂粮作物,2010,30(2):132-133.
- [10] 柴宗文,刘祎鸿,岳 云,等.向日葵稳产高产栽培技术[J].中国农技推广,2008,24(2):29-31.

(本文责编:陈 珩)